
IRREDUCIBILITY OF THE WEYL REPRESENTATION

S. SUNDAR

Abstract. Let H be a separable Hilbert space and denote its symmetric Fock space

by Γs(H). Let A be the linear span of {W (ξ) : ξ ∈ H}, where {W (ξ) : ξ ∈ H} stands

for the collection of Weyl operators on Γs(H). The purpose of this note is to record a

proof of the fact that A is irreducible, i.e. the commutant of A is trivial. Consequently,

A is weakly (and strongly) dense in B(Γs(H)). This fact is crucial to construct CCR

flows in the theory of E0-semigroups. Proofs of this fact can be found in [2] and [1]. This

note grew out of the author’s attempt to understand the proofs presented in those two

books. I believe that graduate students working in E0-semigroups, quantum probability

and related topics will find this note to be of use.

1. Symmetric Fock space, exponential vectors and the Weyl operators

Let H be a separable Hilbert space. Set H⊗0 := C and for n ≥ 1, set

H⊗n := H ⊗H ⊗ · · · ⊗H︸ ︷︷ ︸
n times

.

For n ≥ 1, let Sn be the permutation group on n symbols. For σ ∈ Sn, let Uσ be the

operator on H⊗n defined by

Uσ(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = ξσ(1) ⊗ ξσ(2) ⊗ · · · ⊗ ξσ(n).

Clearly, for σ ∈ Sn, Uσ is a unitary operator.

Define

H⊗ns := {ξ ∈ H⊗n : Uσ(ξ) = ξ for every σ ∈ Sn}.

Set H⊗0s := C. The direct
⊕
n≥0

H⊗ns is called the symmetric Fock space and is denoted

Γs(H). For n ≥ 1, let Pn : H⊗n → H⊗n be the orthogonal projection onto H⊗ns . Then,

Pn :=
1

n!

∑
σ∈Sn

Uσ.

For ξ ∈ H, let ξ⊗n := ξ ⊗ ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
n times

if n ≥ 1 and set ξ⊗n = 1 if n = 0.

Lemma 1.1. For every n ≥ 0, the set {ξ⊗n : ξ ∈ H} is a total subset of H⊗ns .
1
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Proof. We can assume that n ≥ 2. Let D be the closure of the linear span of {ξ⊗n :

ξ ∈ H}. Note that {Pn(ξ1⊗ · · · ⊗ ξn) : ξ1, ξ2, · · · , ξn ∈ H} is a total set in H⊗ns . Thus, it

suffices to show that Pn(ξ1 ⊗ · · · ⊗ ξn) ∈ D for every ξ1, ξ2, · · · , ξn ∈ H. To that effect,

let ξ1, ξ2, · · · , ξn ∈ H be given. Observe that up to a scalar factor, Pn(ξ1 ⊗ ξ2 · · · ⊗ ξn)

coincides with the coefficient of t1t2 · · · tn of the ‘polynomial’ (t1ξ1 + t2ξ2 + · · ·+ tnξn)⊗n

which takes values in D. The proof follows. 2.

For ξ ∈ H, let

e(ξ) :=
⊕
n≥0

ξ⊗n√
n!
.

The collection {e(ξ) : ξ ∈ H} is called the set of exponential vectors. Note that for

ξ, η ∈ H,

〈e(ξ)|e(η)〉 = e〈ξ|η〉.

Lemma 1.2. The set {e(ξ) : ξ ∈ H} is total in Γs(H).

Proof. Let D be the closure of the linear span of {e(ξ) : ξ ∈ H}. Thanks to Lemma

1.1, it suffices to prove that ξ⊗n ∈ D for every ξ ∈ H. Let ξ ∈ H be given. Define a map

f : R→ D by f(t) := e(tξ). The map f is analytic. Note that up to a scalar factor,

ξ⊗n := f (n)(0).

The proof follows. 2

Remark 1.3. The vector e(0) = 1⊕ 0⊕ 0 · · · is usually called the vacuum vector.

Remark 1.4. We will repeatedly make use of the following. Suppose H1 and H2 are

Hilbert spaces and S1 and S2 are total subsets of H1 and H2 respectively. Let φ : S1 → S2

be a map such that 〈φ(x)|φ(y)〉 = 〈x|y〉 for x, y ∈ S1. Then, there exists a unique

isometry V : H1 → H2 which extends φ. Moreover if φ is a bijection, then the isometry

V is a unitary.

The following statements follow directly from the previous remark and the totality of

the exponential vectors.

(1) Let ξ ∈ H be given. Then, there exists a unique unitary operator on Γs(H),

denoted W (ξ), such that

W (ξ)e(η) = e−
||ξ||2

2
−〈η|ξ〉e(η + ξ).

The collection {W (ξ) : ξ ∈ H} is called the set of Weyl operators. Moreover, the

Weyl operators satisfy the following relations called the canonical commutation

relations abbreviated as CCR. For ξ, η ∈ H,

W (ξ)W (η) = eiIm〈ξ|η〉W (ξ + η)
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where Im(〈ξ|η〉) denotes the imaginary part of 〈ξ|η〉. In particular, for ξ ∈ H,

W (ξ)∗ = W (−ξ).
(2) Let H1 and H2 be Hilbert spaces. Then, there exists a unique unitary operator

from Γs(H1⊕H2)→ Γs(H1)⊗Γs(H2) which maps e(ξ1⊕ ξ2) to e(ξ1)⊗ e(ξ2). We

always identify Γs(H1 ⊕H2) with Γs(H1)⊗ Γs(H2) via this identification. Under

this identification, note that for ξ1 ∈ H1 and ξ2 ∈ H2,

W (ξ1 ⊕ ξ2) = W (ξ1)⊗W (ξ2).

Let A be the linear span of {W (ξ) : ξ ∈ H}. From the CCR relations, it is clear that

A is a unital ∗-subalgebra of B(Γs(H)).

The main aim of this note is to prove the following theorem.

Theorem 1.5. The ∗-subalgebra A acts irreducibly on Γs(H), i.e. A′ = C. Conse-

quently, A is weakly (and strongly) dense in B(Γs(H)).

2. Proof of the main theorem

First, we prove Thm. 1.5 when H is finite dimensional. Thus, assume H = Cn. Since

Γs(Cn) =
n⊗
i=1

Γs(C)

and

W (z1, z2, · · · , zn) =
n⊗
i=1

W (zi),

it suffices to prove Thm. 1.5 when H is one dimensional.

Let us concentrate on the 1-dimensional case. One of the key steps involved is to realise

the Weyl commutation relation from the CCR relation. It is also possible to realise the

CCR relation from the Weyl commutation relation which we do not need.

For s, t ∈ R, set Us := W (s) and Vt := W ( it
2
). Then, using the CCR relation twice,

we get

UsVt = eitsVtUs

for s, t ∈ R. The above relation is called the Weyl commutation relation. It is better at

this point to make a formal definition.

Definition 2.1. Let K be a Hilbert space and let U := {Us}s∈R and V := {Vt}t∈R be two

strongly continuous 1-parameter group of unitaries on K. We say that the pair (U, V ) is

a representation of the Weyl commutation relation if

UsVt = eitsVtUs

for every s, t ∈ R.
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The representation (U, V ) is said to be irreducible if and only if {Us, Vt : s, t ∈ R}′ = C.

Suppose (U, V ) and (Ũ , Ṽ ) are two representations of the Weyl commutation relation.

Then, we say that (U, V ) and (Ũ , Ṽ ) are unitarily equivalent if there exists a unitary

X : K → K̃ such that

XUsX
∗ = Ũs; XVtX

∗ = Ṽt.

Here, K is the Hilbert space on which (U, V ) acts and K̃ is the Hilbert space on which

(Ũ , Ṽ ) acts.

The Stone-von Neumann theorem is stated below. Strictly speaking, we do not need

the following theorem for the proof of Thm. 1.5. However, the reader should be aware

of it.

Theorem 2.2 (Stone-von Neumann). Up to unitary equivalence, there is one and only

irreducible representation of the Weyl commutation relation.

Let us give another ‘natural choice’ for the Weyl commutation relation.

Example 2.3. Let K := L2(R). For s ∈ R, let Us be the unitary operator on K defined

by

Us(ξ)(x) = f(x− s).
For t ∈ R, let Vt be the unitary operator on K defined by

Vt(ξ)(x) = e−itxξ(x).

We leave it to the reader to verify that (U, V ) is a representation of the Weyl commu-

tation relation. We call this pair (U, V ) the canonical representation of the Weyl

commutation relation.

Example 2.4. Let L := Γs(C). For s ∈ R, let Ũs := W (s) and for t ∈ R, let Ṽt := W ( it
2
).

Then, (Ũ , Ṽ ) is a representation of the Weyl commutation relation and we call the pair

(Ũ , Ṽ ) the Weyl representation of the Weyl commutation relation.

What we ought to prove is that the Weyl representation is irreducible. We prove this

in steps.

1 First, we prove that the canonical representation is irreducible.

2 Next, we compare the Weyl representation with the canonical representation and

show that they are unitarily equivalent. For, the Stone-von Neumann theorem

says that if Thm. 1.5 is true, then the Weyl representation and the canonical

representation are indeed equivalent. So, we are, in some sense, compelled to

compare the two representations. Once we show that the Weyl representation

and the canonical representation are unitarily equivalent, the irreducibility of the

Weyl representation follows from that of the canonical one.
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Remark 2.5. Let (X,B) be a measurable space and let µ be a σ-finite measure on X.

For φ ∈ L∞(X,µ), let Mφ be the bounded linear operator on L2(X,µ) defined by

Mφ(ξ)(x) = φ(x)ξ(x)

for ξ ∈ L2(X,µ).

The map

L∞(X,µ) 3 φ→Mφ ∈ B(L2(X,µ))

is continuous when L∞(X,µ) is given the weak ∗-topology (after identifying L∞(X,µ)

with the dual of L1(X,µ)) and B(L2(X,µ)) is given the weak topology. Moreover,

{Mφ : φ ∈ L∞(X,µ)}′ = {Mφ : φ ∈ L∞(X,µ)}.

Proposition 2.6. The canonical representation of the Weyl commutation relation is

irreducible

Proof. Let (U, V ) be the canonical representation. Let T ∈ {Us, Vt : s, t ∈ R}′ be

given.

For t ∈ R, let φt ∈ L∞(R) be defined by φt(x) = e−itx. Note that Vt = Mφt . We claim

that the linear span of {φt : t ∈ R} is weak ∗-dense in L∞(R). Suppose not. Then, there

exists a non-zero f ∈ L1(R) such that for every t ∈ R,∫
e−itxf(x)dx = 0.

In other words, the Fourier transform of f is zero which forces f = 0. This is a contra-

diction to the fact that f 6= 0. Hence, {φt : t ∈ R} is weak ∗-dense in L∞(R).

Since T commutes with Mφt for every t ∈ R and {φt : t ∈ R} is weak ∗-dense in

L∞(R), it follows from Remark 2.5 that T commutes with Mφ for every φ ∈ L∞(R).

Again, thanks to Remark 2.5, it follows that there exists φ ∈ L∞(R) such that T = Mφ.

Since T is positive, we can choose φ to be non-negative.

The fact that UsTU
∗
s = T for every s ∈ R translates to the fact that for every s ∈ R,

φ(x+ s) = φ(x) for almost all x ∈ R. Let ωφ : Cc(R)→ C be defined by

ωφ(f) =

∫
f(t)φ(t)dt.

To show that φ is a scalar, it suffices to show that ωφ is a scalar multiple of the linear

functional I : Cc(R)→ C defined by the equation

I(f) =

∫
f(t)dt.



6 S. SUNDAR

Let g ∈ Cc(R) be such that I(g) = 0. Choose f ∈ Cc(Rn) such that
∫
f(t)dt = 1.

Calculate as follows to observe that

ωφ(g) =

∫
f(s)(

∫
g(t)φ(t)dt)ds

=

∫
f(s)(

∫
g(t)φ(t− s)dt)ds

=

∫
g(t)(

∫
f(s)φ(t− s)ds)dt

=

∫
g(t)(

∫
f(s)φ(−s)ds)dt

= (

∫
g(t)dt)(

∫
f(s)φ(−s)ds)

= 0.

Hence, Ker(I) ⊂ Ker(ωφ). This shows that ωφ is a scalar multiple of I. Hence, φ is a

scalar and consequently T is a scalar. The proof is now complete. 2

Next, we compare the Weyl representation with the canonical one. Let (Ũ , Ṽ ) be

the Weyl representation and let (U, V ) be the canonical representation. Observe the

following.

(1) The vacuum vector Ω := e(0) is cyclic for the Weyl representation by which

we mean that {ŨsṼtΩ : s, t ∈ R} is total in Γs(C). Consequently, the Weyl

representation is completely determined by ‘the state’ given by the vacuum vector.

(2) As far as the canonical representation is concerned, being irreducible, every unit

vector is cyclic. So, if we could find a unit vector ξ ∈ L2(R) such that ‘the

state’ determined by ξ in the canonical representation coincides with ‘the state’

determined by the vacuum vector in the Weyl representation, then we are done.

The reader should compare the above statements with the usual statements that one

make after learning about the GNS construction. The reader might wonder where the

states are defined. Does there exist a C∗-algebra on which the two states mentioned

above live? The answer is yes; although, we will not discuss this issue. The interested

reader is recommended to read the operator algebraic proof of the Stone-von Neumann

theorem that can be found, for instance, in [3] and figure out the C∗-algebra on her own.

Coming back, what we seek is a unit vector ξ ∈ L2(R) such that for every s, t ∈ R,

〈ŨsṼtΩ|Ω〉 = 〈UsVtξ|ξ〉.

Assume for the moment that this is achieved. Calculate as follows to observe that for

s1, s2, t1, t2 ∈ R,

〈Us1Vt1ξ|Us2Vt2ξ〉 = 〈V ∗t2U
∗
s2
Us1Vt1ξ|ξ〉
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= 〈V−t2Us1−s2Vt1ξ|ξ〉

= eit2(s1−s2)〈Us1−s2Vt1−t2ξ|ξ〉

= eit2(s1−s2)〈Ũs1−s2Ṽt1−t2Ω|Ω〉

= eit2(s1−s2)〈Ũs1−s2Ṽ−t2Ṽt1Ω|Ω〉

= 〈Ṽ−t2Ũ−s2Ũs1Ṽt1Ω|Ω〉

= 〈Ũs1Ṽt1Ω|Ũs2Ṽt2Ω〉.

Thanks to the above calculation, the totality of {UsVtξ : s, t ∈ R}, the totality of

{ŨsṼtΩ : s, t ∈ R} and Remark 1.4, it follows that there exists a unique unitary operator

X : L2(R)→ Γs(C) such that

X(UsVtξ) = ŨsṼtΩ.

By calculating the action of the relevant operators on the total set and by making use

of the Weyl commutation relation, we see that XUsX
∗ = Ũs and XVtX

∗ = Ṽt for

every s, t ∈ R. We leave this verification to the reader. This proves that the Weyl

representation and the canonical representation are unitarily equivalent.

How to find the desired vector ξ ∈ L2(R)? The equation

〈UsVtξ|ξ〉 = 〈ŨsṼtΩ|Ω〉

translates to the equation

(2.1)

∫
e−itxξ(x− s)ξ(x)dλ(x) = e−

t2

8 e−
s2

2 e
−its
2 .

The above equation needs to be satisfied for every s, t ∈ R. If we substitute s = 0, we

see that the Fourier transform of |ξ|2 is a Gaussian and hence |ξ|2 must be a Gaussian.

Therefore, |ξ| must be a Gaussian. Why not just take ξ to be a Gaussian and see what

happens.

Let us recall the formula regarding the Gaussian that we must be able to work out on

our own. I took it from Wikipedia. (The reader must do the necessary computation of

the integral.) For a > 0, we have

(2.2)

√
a

π

∫
eibxe−ax

2

dx = e−
b2

4a .

It is appropriate at this point to scale the Lebesgue measure by a factor of
√

2
π
. So,

let dλ(x) :=
√

2
π
dx. The Hilbert space L2(R) is now L2(R, dλ). Define ξ ∈ L2(R, dλ) by

ξ(x) = e−x
2

.
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Then, ξ is of unit norm. Using Eq. 2.2 and by elementary calculations, we see that Eq.

2.1 is satisfied for every s, t ∈ R. The proof of Thm. 1.5 when H is finite dimensional is

complete.

Next, we proceed towards proving Thm. 1.5 when H is infinite dimensional.

Notation: For a vector u ∈ Γs(H), we denote the n-the component of u by un, i.e.

u =
∞⊕
n=0

un.

Let {ξ1, ξ2, · · · , } be an orthonormal basis for H.

For n ≥ 1, let Hn := span{ξ1, ξ2, · · · , ξn}. Let Un : Γs(Hn)⊗ Γs(H
⊥
n )→ Γs(H) be the

unique unitary such that

Un(e(ξ)⊗ e(η)) = e(ξ + η).

Note that for ξ ∈ Hn and η ∈ H⊥n , U∗nW (ξ + η)Un = W (ξ)⊗W (η).

Lemma 2.7. Keep the foregoing notation. Let m ≥ 1 be given. For u ∈ Γs(H
⊥
m), let xk

be the k-component of Um(e(0)⊗ u). Then, xk is orthogonal to {ξ⊗k : ξ ∈ Hm}.

Proof. It suffices to prove the assertion when u = e(η) for some η ∈ H⊥m. Then,

xk = η⊗k√
k!

which is clearly orthogonal to {ξ⊗k : ξ ∈ Hm}. The proof is complete. 2

We are all set to prove Thm. 1.5.

Proof of Thm. 1.5. Let T ∈ {W (ξ) : ξ ∈ H}′ . We claim that x := Te(0) is a scalar

multiple of e(0). For n ≥ 1, let xn be the n-component of x. We need to prove that

xn = 0 for n ≥ 1.

Let n ≥ 1 be given. Since {ξ⊗n : ξ ∈ Hm,m ≥ 1} is total in H⊗ns , it suffices to show

that for every m and for every ξ ∈ Hm, 〈xn|ξ⊗n〉 = 0. Suppose m ≥ 1 and ξ ∈ Hm. Note

that U∗mTUm ∈ {W (u)⊗ 1 : u ∈ Hm}
′
. Thanks to the finite dimensional version of Thm.

1.5, we can conclude that there exists Tm ∈ B(Γs(H
⊥
m)) such that U∗mTUm = 1⊗ Tm.

Now

x = Te(0) = Um(1⊗ Tm)U∗me(0) = Um(1⊗ Tm)(e(0)⊗ e(0)) = Um(e(0)⊗ Tme(0)).

Thanks to Lemma 2.7, xn is orthogonal to ξ⊗n. This proves the claim.

Let λ ∈ C be such that Te(0) = λe(0). Calculate as follows to observe that for ξ ∈ H,

Te(ξ) = e
||ξ||2

2 TW (ξ)e(0)

= e
||ξ||2

2 W (ξ)Te(0)

= λe
||ξ||2

2 W (ξ)e(0)

= λe(ξ).

Hence, T = λ. The proof of Thm. 1.5 is now complete. 2
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